Research on Fuzzing Technology for JavaScript Engines

Ye Tian
State Key Laboratory of Mathematical
Engineering and Advanced
Computing, Zheng zhou, China Wuxi,
China
sweetwild@qq.com

ABSTRACT

JavaScript engine is the core component of web browsers, whose
security issues are one of the critical aspects of the overall Web
Eco-Security. Fuzzing technology, as an efficient software testing
approach, has been widely applied to detecting vulnerabilities in
different JavaScript engines, which is a security research hotspot
at present. Based on systematical dissection of existing fuzzing
methods, this paper reviews the development and technical ideas
of JavaScript Engine Fuzzing combined with taxonomy, proposes a
general framework of JavaScript Engine Fuzzing and analyzes the
key techniques involved. Finally, we discuss the core issues that
restrict efficiency in current research and present an outlook on
the future trends of JavaScript Engine Fuzzing.

CCS CONCEPTS

« Security and privacy; - Software and application security; «
Software security engineering;

KEYWORDS

Browser security, JavaScript engine, Fuzzing, Vulnerability detec-
tion

ACM Reference Format:

Ye Tian, Xiaojun Qin, and Shuitao Gan. 2021. Research on Fuzzing Technol-
ogy for JavaScript Engines. In The 5th International Conference on Computer
Science and Application Engineering (CSAE 2021), October 19-21, 2021, Sanya,
China. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3487075.
3487107

1 INTRODUCTION

As the interactive window between users and the information net-
work, browser is an indispensable part of the web-ecosystem, and
also one of the tempting targets for cyber-attacks. Internet giants,
including Google, Microsoft and Apple, need to spend plenty of
manpower and resources to research and protect the security of
their browsers every year. JavaScript engine is the central compo-
nent of the browser kernel, which mainly supports the dynamic
interaction of pages by interpreting and executing JS scripts in real
time. At present, more than 97.4% of all websites use JavaScript for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CSAE 2021, October 19-21, 2021, Sanya, China

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8985-3/21/10...$15.00
https://doi.org/10.1145/3487075.3487107

Xiaojun Qin
State Key Laboratory of Mathematical
Engineering and Advanced
Computing, Wuxi, China
Xjqin@163.com

Shuitao Gan
State Key Laboratory of Mathematical
Engineering and Advanced
Computing, Wuxi, China
ganshuitao@gmail.com

140 B JerryScript

120 m SpiderMonkey

B JavascriptCore
100 . -
m ChakraCore

80 mvs

60

40

20

! i

B4. 2016 2016 2017 2018 2019 2020 2021

Figure 1: Vulnerability Exposure Statistics for Mainstream
JavaScript Engines.

client-side programming [1], hence JavaScript engines are attractive
targets for attackers.

To ensure efficient parsing and execution of JS scripts, JavaScript
engines are usually designed and implemented based on C/C++,
making them at higher risk of security threats and vulnerable to
malicious exploitation by attackers. Through a cross-comparison
of the NVD(National Vulnerability Database) and CVE(Common
Vulnerabilities and Exposures) databases, there are more than 500
medium/high risk vulnerability entries exposed to V8 [2], Chakra-
Core [3], JavaScriptCore [4], SpiderMonkey [5], JerryScript [6] and
other mainstream JavaScript engines , among which ChakraCore
and V8 both have more than 200 entries (shown in Figure 1). Attack-
ers can indirectly exploit JavaScript engine vulnerabilities to cause
remote command execution and gain control of the system, jeopar-
dizing the user information and host security. In this context, it is
important to employ fast and effective software testing techniques
to analyze JS engines and find flaws in the design, development and
optimization process.

Fuzzing (also called Fuzzy testing) [7] is a well-known technique
in vulnerability detection, especially for software like JavaScript
engines, which have large code amounts and complex structures.
Fully taking the advantages of automated testing, fuzzing can no-
tably reduce the dependence of prior knowledge and labor costs.
Moreover, Coverage Feedback, Deep Learning, Distributed Comput-
ing and other techniques are adopted to enrich the fuzzing frame-
work, which improves the vulnerability detection capacity towards
JavaScript engines. In terms of development process, JavaScript
Engine Fuzzing has evolved from manually redacting grammar tem-
plates for test case generation to automatically constructing test
cases with features such as diverse code mode and cross-platform
support.

In this paper, we try to review the development of JavaScript
Engine Fuzzing, summarize the corresponding fuzzing techniques in

https://doi.org/10.1145/3487075.3487107
https://doi.org/10.1145/3487075.3487107
https://doi.org/10.1145/3487075.3487107

CSAE 2021, October 19-21, 2021, Sanya, China

combination with the operating mechanisms and vulnerability de-
tection principles of JS engines, and tease out the challenges. Based
on comprehensive research of methodology and technical imple-
mentation for JavaScript Engine Fuzzing, we classify and generalize
the mainstream JavaScript Engine Fuzzers (fuzzing tools) according
to test-case construction, and propose a general JavaScript Engine
Fuzzing Framework. Then, we further analyze the key techniques
involved and the problems to be solved in JavaScript Engine Fuzzers,
and point out the factors that restrict fuzzing efficiency and the
corresponding solutions. Finally, we present the conclusion and out-
look on JavaScript Engine Fuzzing techniques in line with practical
analysis.

2 OVERVIEW

JavaScript is a scripting language that supports page dynamic inter-
action, which is broadly utilized in web development related areas.
JavaScript engine is a kind of component program that dynamically
parses and executes JS scripts according to the ECMAScript stan-
dard [8], which can be regarded as a dedicated script processing
virtual machine. Its core function is to provide dynamic interac-
tion capabilities for applications such as browser that support the
JavaScript language API. In essence, JavaScript engine is a driver
that converts JS code into machine code and executes it.

2.1]S Engine Operating Mechanism

JavaScript engine usually consists of four parts: parser, interpreter,
JIT compiler and runtime environment. The dynamic parsing of
JS scripts by JavaScript engine can be divided into two phases:
code validity check and code interpreting execution. The validity
check stage includes syntax analysis and semantic analysis, while
the interpreting execution stage includes pre-parsing and actual

JavaScript
Source Code
™
v
Parser 4’(/ﬁ AST (
» Interpreter |y
| Support
Byte Code Runtime
Environment
Suppn‘rt
@ v
E JIT Compiler
| T
: s
Substitute
Optimized !
Machine Code (¢ ------- !

Figure 2: Schematic of JS Engine Operating Mechanism.

Ye Tian et al.

execution. The specific operating principle is shown in Figure 2
JavaScript engine first uses the syntax parser to parse the JavaScript
code into the Abstract Syntax Tree (AST), and then the interpreter
analyzes the AST to generate the byte-code based on line by line
code interpretation. To maintain fast execution of the JS code, the
runtime environment monitors the running code and then feeds op-
timizable code to the JIT (Just-In-Time) compiler for optimization,
which generates optimized machine code to replace the bytecode
not optimized by previous interpreter. Finally, the optimized ma-
chine code is executed by JavaScript engine to render corresponding
interactive functions of the script. What calls for special attention is
that JavaScript engine will run the unoptimized bytecode before the
code is compiled for optimization, thereby ensuring the engine’s
actual processing efficiency.

2.2 JS Engine Vulnerability Detection Methods

The core principle of JavaScript engine vulnerability detection is
to search for input sets that can trigger exceptions or crashes in
the input space following the corresponding rules, and find the
specific user-mode input that matches the vulnerability profile.
According to the different generation mechanisms and internal
logic, JavaScript engine vulnerabilities can be categorized into four
types, namely Overflow, Use After Free, Race Condition and Type
Confusion vulnerabilities [9].

Due to the large code amount and complex functional structure
of JavaScript engines, the manual analysis approach requires heavy
effort in source code audit and reverse analysis, leading to inefficient
vulnerability detection. Therefore, the industry mostly applies static
analysis and fuzzing to detect vulnerabilities in JavaScript engines
with less reliance on manual work.

Static analysis [10] can automatically analyze the program execu-
tion paths without running the application under test by introduc-
ing intermediate representations, formal logic and other techniques
to detect potential flaws arising from the design and development
process. Typical static analysis tools [11-13] that leverage data flow
analysis are sensitive to programming languages implementing
JavaScript engines, such as C/C++, and can be applied to JS en-
gine vulnerability detection, but the uptilted false alarm rate may
greatly reduce the credibility of static analysis reports. In addition,
static analysis methods based on taint analysis [14, 15] and sym-
bolic execution [16, 17] theoretically have the capacity to analyze
JavaScript engines with higher accuracy. However, conditioned by
the complex logic structure and dynamic execution mechanism
of JS engines, the actual testing process may have low execution
speed and is susceptible to memory explosion, path explosion, etc.,
which seriously restricts the vulnerability detection capability of
the static analysis. Currently, studies [18-20] using static analysis
to detect vulnerabilities in JavaScript engines mainly focus on how
to reduce manual involvement and test running overhead.

In comparison, fuzzing pays more attention to the automation
and execution speed during the detection process, and requires
less artificial expertise and analysis, making it more suitable for
detecting vulnerabilities in intricate JavaScript engines.

Research on Fuzzing Technology for JavaScript Engines

2.3 Fuzzing Technique Outline

Fuzzing (7, 21] is a software testing technique that automatically
constructs and inputs unexpected data in accordance with the char-
acteristics of target objects, while monitoring operational anomaly
signals to detect potential vulnerabilities. With simple design &
deployment, low operational overhead, nice scalability and high
reliability, fuzzing has been unanimously accepted by industry and
academia, thus commonly used in software security fields. SAGE
[22], honggfuzz [23], AFL [24], libFuzzer [25] and other fuzzers
launched by security teams of Internet vendors are deployed for
security tests throughout the lifecycle of software development &
maintenance, and have identified quite a few undisclosed vulnera-
bilities in various applications/systems.

After years of technical accumulation, fuzzing has evolved from
the early random testing to the stage of targeted and oriented test-
ing in line with the characteristics of the PUT (program under test).
In terms of the input data type used by PUTs, there are mainly file-
based, network-protocol-based, kernel-based and API-based fuzzers.
JavaScript Engine Fuzzing requires to input JS code generated under
certain rules into the JavaScript engines, which is a typical appli-
cation of file-based fuzzers, with early representative tools such
as Peach [26] and FileFuzz [27]. Fuzzing can be categorized into
black-box, white-box and grey-box models according to the depen-
dency of PUTs’ internal knowledge structure. Since JavaScript is
a dynamic weakly typed language, the white-box model cannot
meet the needs of dynamic execution, so JavaScript Engine Fuzzing
mainly adopts black-box or grey-box models. In practice, fuzzing
technology can detect various kinds of vulnerabilities, and has
become the mainstream JavaScript engine vulnerability detection
means.

2.4 Challenges

Unlike ordinary software, JavaScript engines have complex logic
and huge code scale, increasing the difficulty of vulnerability detec-
tion. Compared with general fuzzing methods, efficient JavaScript
Engine Fuzzing needs to exceed the following issues.

2.4.1 Test-Case Validity Check. JavaScript engines have a strict
validity check mechanism in the JS script parsing process (shown
in Figure 3). When encountering code that does not conform to
the syntax or semantic specifications, the check mechanism will
terminate the parsing of the entire test case, which prevents the
test case from touching the core functional module of JavaScript
engines and makes it difficult to achieve the ideal testing results.
If we blindly apply the random mutation strategy to generating
test cases, the legitimacy of highly structured inputs such as JS
code would be undermined with great ease. As a result, the fuzzing
process may consume plenty of time in the early parsing phase,
making it difficult to find much more valuable deep-rooted bugs,
which in turn limits the efficiency of detecting vulnerabilities in
JavaScript engines.

24.2 Code Coverage Enhancement. Code coverage capability is
one of the vital indicators to measure the vulnerability detection
ability of a fuzzing tool. Better code coverage capability means
a higher probability of detecting valid vulnerabilities. In order to

CSAE 2021, October 19-21, 2021, Sanya, China

[Validity Check !

- I I
JavaScript | Syntax | Pass | Semantic | mssi |]S Engine
Code ! Check Check i Core Logic

I I

! 1 1 |

O SR (I

Figure 3: JavaScript Engine Validity Check Mechanism.

implement multiple Web dynamic interaction functions and en-
sure browser’s reliable operation, the mainstream JavaScript en-
gines have a large amount of code, among which the smallest one,
JavaScriptCore, has 450,000 lines of critical code, while SpiderMon-
key has more than one million lines. The enormous code scale
makes it impossible to effectively fuzz most of the program, and
test cases can only cover limited execution paths. Therefore, how to
construct test cases with higher code coverage is a great challenge
for fuzzing JavaScript engines.

3 CLASSIFICATION

Test cases are pivotal to the capability of discovering JavaScript
engines’ vulnerability. Consequently, unlike traditional software
testing techniques centered on the PUTs, JavaScript Engine Fuzzing
can be classified into Generation-Based JS-Engine Fuzzing, Mutation-
Based JS-Engine Fuzzing and Composite (generation + mutation)
JS-Engine Fuzzing around the test case construction.

3.1 Generation-Based JS-Engine Fuzzing

Generation-based fuzzing is also called model-based fuzzing [28], as
it generates ideal test cases by constructing specific models based on
the analysis of the PUTSs’ expected inputs. Applied to the JavaScript
engine vulnerability detection, the crux of generation-based fuzzing
lies in how to automatically construct test cases with rich code-style
and JS-specification compliance.

Early generation-based fuzzers such as Peach [26] required to
manually construct test templates based on the characteristics of
JavaScript engines, which generated limited samples with poor
validity. JSfunfuzz [29] introduced JS grammar templates, and for
the first time used grammar-based input generation, which was
able to generate random and syntactically correct test cases and
found quantities of JavaScript engine vulnerabilities. However, to
guarantee the test cases’ validity, researchers were required to
expend massive efforts to construct grammar rule templates, and
the automation level of JSfunfuzz is relatively low.

In order to enhance the automation of fuzzing, TreeFuzz [30]
and Skyfire [31] learned grammatical features and rules from exist-
ing samples to generate JS test inputs by introducing probabilistic
models. TreeFuzz leveraged probabilistic context free grammar
(PCFG) to automatically infer test case generation models from
the given JS corpus, while Skyfire adopted probabilistic context
sensitive grammar (PCSG) to generate a much more reasonable
distribution of test cases. Both two fuzzers employed the idea of
data-driven test case generation, which overcame the reliance on
prior knowledge. CodeAlchemist [32] proposed a semantics-aware

CSAE 2021, October 19-21, 2021, Sanya, China

assembly technique, which first performed initial seed fragmenta-
tion using abstract syntax tree (AST), and then fetched the variable
definitions according to control flow and data flow analysis after
preprocessing measures such as de-duplication and variable nor-
malization, and then identified the variable types in combination
with code instrumentation. Finally, code fragments matching con-
straints were assembled to generate semantically correct JS test
cases. This semantics-aware split-combination approach could ef-
fectively increase the test case legitimacy and reduce the invalid
test overheads arising from runtime errors.

Montage [33] pioneered the application of the neural network
language model (NNLM) to fuzzing JavaScript engines, utilizing JS
code fragments filtered and processed from the Test262 [34] dataset
to train the LSTM (Long Short Term Memory) generation model.
The LSTM model learned the syntax, semantic patterns and control
flow features of JavaScript training set by deducing correlations be-
tween code fragments, which markedly decreased the possibility of
triggering runtime errors. Comfort [35] replaced the NNLM model
with an advanced Transformer-based GPT-2 model, which utilized
differential testing and language specification to assist fuzzing, fur-
ther lifting the efficiency and effectiveness of test case generation.
The JS test cases generated by DL models have abundant code-
styles and higher accuracy, while the fuzzers’ code coverage and
vulnerability detection capability have noticeable improvement.

3.2 Mutation-Based JS-Engine Fuzzing

Mutation-based fuzzing constructs new test cases by mutating
initial inputs through random or heuristic strategies, free from
the dependence on generative models, also known as model-less
fuzzing [28]. Compared to generation-based fuzzers, mutation-
based fuzzers execute faster, and further improve code coverage due
to the inclusion of feedback mechanism. AFL [24] is the most repre-
sentative mutation-based fuzzer in recent years, and several works
[36-38] have optimized and extended upon AFL to explore numer-
ous unrevealed vulnerabilities. However, owing to the JavaScript
engines’ strict input validity check mechanism, it is difficult for JS
samples to reach the core logic of JS engines if the byte/bit-level
random mutation of test cases is directly used by fuzzers such as
AFL, resulting in inefficient fuzzing. Therefore, mutation-based
JavaScript Engine Fuzzing necessitates taking full account of the
JavaScript language structural features with a primary focus on
what level of mutation is conducted.

Superion [39] built a grey-box model that performed mutation
at the JavaScript AST level based on AFL and ANTLR [40], us-
ing a syntax-aware trimming strategy to directly reduce the test
input space at AST level, and then utilizing subtree replacement
to achieve syntax-aware seed mutation. This approach dramati-
cally reduced the invalidity of]S test cases solely produced by AFL.
Under the same conditions, the code coverage and vulnerability
detection capability of Superion distinctly surpassed the previous
fuzzing methods. Similarly, Deity [41] assisted mutation process
with feature templates extracted from 1-day exploit samples and
employed a more analytically efficient tool, Esprima, to realize op-
erations such as trimming and mutation towards the AST. SaFuzzer
[42] further incorporated a semantic-repair mechanism to solve the
syntactically valid but semantically invalid problem of test cases

Ye Tian et al.

with mutated output at AST level, reducing the chance of trigger-
ing runtime errors and thus improving the vulnerability detection
efficiency.

Fuzzilli [43] introduced a custom intermediate language, FuzzIL,
which converted JS code into FuzzIL that is closer to the actual
bytecode executed by JavaScript engine, and reverted to JS code
(the newly constructed test cases) after mutation operations at
the intermediate language level. Mutations at IL level effectively
inherited the initial inputs’ control flow and data flow attributes,
thus enabling the semantic validity of test cases. In comparison
with the AST-based mutation methods, however, Fuzzilli ignored
part of the path coverage information in the structure design and
was less capable of spotting bugs in the JIT optimization process.

3.3 Composite JS-Engine Fuzzing

Generative-based fuzzing can strictly control the generation of each
test case statement, resulting in high test validity, but also produce
a huge test input space. Mutation-based fuzzing is more efficient,
but the validity of test cases generated by mutation strategy is rela-
tively low. To balance test validity and efficiency, most JavaScript
Engine Fuzzzers combine the ideas of generation and mutation, i.e.,
composite JS engine fuzzing.

LangFuzz [44] was the earliest one to apply code-fragmentation
ideas to fuzzing interpreters and pioneered the composite JS-engine
fuzzing. LangFuzz parsed legitimate JavaScript samples with AST,
learned to extract various code fragments and stored them as token
streams in a fragments pool, and then replaced the fragments to
build new test cases. Test cases were constructed in both generation
and mutation means (mutation dominating), where the generative
one leveraged breadth-first strategy to replace non-terminal AST
nodes, and the mutative one leveraged random strategy to replace
the fellow fragments. GramFuzz [45] adopted depth-first strategy
to traversal search each node of AST and performed mutations
such as deletion, modification and duplication with the adjustable
probability parameter P. IFuzzer [46] introduced the genetic pro-
gramming that used genetic algorithms and evolutionary strategies
to select, crossover and mutate JS samples, further extending the
test case construction mode. LangFuzz, GramFuzz and IFuzzer all
use context-free grammar to generate and mutate code fragments
at AST level, vastly elevating JS test case construction. Neverthe-
less, confined by the absence of feedback mechanism in black-box
model, they were prone to affect the efficiency of fuzzing JavaScript
engines due to excessive randomness.

Nautilus [47] constituted a grey-box JS engine testing model by
adding instrumentation and coverage feedback techniques based
on generative fuzzer. It first instrumented on the source code in
an AFL-like manner, and then generated inputs for mutation at
the syntax tree level based on grammar rules. After refinement of
the input, Nautilus combined the feedback information to select
the suitable input mutation method from five different mutation
strategies and constructed new JS test cases.

DIE [48] proposed an Aspect-Preserving mutation technique to
retain special structure and type information that might trigger
vulnerabilities during JS test cases construction, addressing the
issue that code-fragmentation might corrupt the logical structure
and subtle semantic of original seeds. Based on the high-quality

Research on Fuzzing Technology for JavaScript Engines

Ini-JS
Samples

Pre-Process |

N

Mutator

CSAE 2021, October 19-21, 2021, Sanya, China

Test-Case

Constructor .
. Execution |

Environment :

sy Composite Fuzzing
mm)p Generation-Based Fuzzing
mmp Mutation-Based Fuzzing

Figure 4: JavaScript Engine Fuzzing Framework.

JS vulnerability samples (including PoCs and test suites), DIE gen-
erated initial corpus through lightweight type analysis, and then
constructed new test cases with Structure-preserving and Type-
preserving mutation strategies. The entire process centered on
so-called Aspect, namely elements with high probability of trig-
gering vulnerabilities, preserving the critical code structures that
affected the control flow and data dependency information as much
as possible. The validity of test cases and the ability to locate deep-
rooted bugs (e.g., JIT optimization procedure defects) have been
significantly improved. At the same time, combined with coverage
feedback technique, DIE can effectively shrink the JavaScript en-
gines’ test input space and lessen invalid mutations, which is the
best Composite JS-Engine Fuzzer in practice.

4 FUZZING FRAMEWORK

JavaScript Engine Fuzzing Framework is analogous to the usual
fuzzing framework which requires various design aspects such as
corpus pre-processing, test case construction and execution en-
vironment for target engines. With the discussion in Section 3,
the overall structure of different JavaScript Engine Fuzzers can be
summed up in the general framework illustrated in Figure 4, de-
spite variance in test procedures and design implementation details.
Firstly, the pre-processing module pre-processes initial JS samples
and stores them in the corpus. The test case constructor then pro-
cesses corpus in generation or mutation or composite means to
construct JS seeds (i.e. test cases). Finally, the execution environ-
ment feeds the JS seeds into pre-instrumented JavaScript engines to
execute and throws crashes or exceptions while running. Moreover,
during JS seed execution, fuzzers who have feedback mechanisms
provide guided feedback on test cases construction together with
coverage information.

Among them, test case constructor is the core of framework,
having the greatest impact on the effectiveness of JavaScript Engine
Fuzzing. Meanwhile, to perform efficient vulnerability detection, we
also require attention to initial corpus construction, effectiveness
& efficiency balance, and runtime feedback.

4.1 Initial Corpus Construction

Initial corpus is the igniter of fuzzing. High-quality initial corpus
enables high code coverage at the start of fuzzing, which is vital to
the performance of fuzzers. The JS samples for constructing initial
corpus are mainly derived in four ways.

i. Manually written by testers
ii. Crawling from web pages
iii. Available PoCs and test suites
iv. Official test datasets

The former two suffer from an irreconcilable conflict between
test orientation and cost, so most current fuzzers adopt the latter
two ways to obtain JS initial samples. In addition, mainstream
JavaScript Engine Fuzzers construct test cases at AST level and
require pre-processing to convert initial corpus into AST form. DIE
[48] developed a lightweight type analyzer that transformed public
vulnerability samples into Typed-AST and deposits them in the
corpus. Montage [33] leveraged Deep Learning model for adaptive
preprocessing based on the official ECMA test suites.

4.2 Effectiveness & Efficiency Balance

The crux of fuzzing is how to reduce the input space and build op-
timized test cases for accurate and efficient vulnerability detection.
To improve effectiveness, differential testing [49] and language
specification assistance [35] have been applied to the design of
JavaScript Engine Fuzzers. Fuzzilli [43] and DIE [48] introduced dis-
tributed technology to improve fuzzing efficiency. Some commercial
firms have also employed large-scale clusters like ClusterFuzz [50]
and OSS-Fuzz [51] to enable more efficient vulnerability detection.
However, restricted by the complex logic structure and large code
size of JavaScript engines, it is hard to satisfy both efficiency and
accuracy in fuzzing, which requires a balance between them in line
with the fuzzer design principles. Taking DIE as an example, instead
of traversing all the valuable code structures to pursue validity, a
random retention strategy is selected to elevate the overall fuzzing
efficiency. In general, the generation-based approach focuses on

CSAE 2021, October 19-21, 2021, Sanya, China

test cases’ validity, while the mutation-based approach cares more
about efficiency.

4.3 Runtime Feedback Techniques

Feedback mechanism is also essential for the fuzzing framework,
mainly relying on instrument and coverage feedback. Fuzzers apply-
ing feedback techniques [39, 41-43, 47, 48] can reduce the overhead
of invalid test case generation, explore more valuable program exe-
cution paths and improve the efficiency of detecting vulnerabilities
in JS engines. Most of the JavaScript engines are open-sourced and
can insert the probes for coverage feedback directly at the source
code level during compiling. For the few JavaScript engines that
are closed source, the code coverage can be monitored with the
AFL-Qemu model [24] or binary dynamic instrumentation [52, 53].
Alternatively, the Intel-PT mechanism [54] can track control flow
information while program executing at the hardware level, al-
lowing efficient coverage feedback to be obtained without source
code.

5 SUMMARY & OUTLOOK

As functionality increases and performance improves, JavaScript
engines’ software code size and inherent logic complexity are grow-
ing rapidly. Therefore, it is a hot topic in security research to locate
JS engine vulnerabilities more precisely and efficiently and to patch
them quickly according to the threat level. Fuzzing, as an efficient
tool to detect JavaScript engine vulnerabilities, has been broadly
applied in industry and academia, and has achieved considerable
results. Employing the NNLM to generate test cases, Montage found
37 unknown bugs in V8, JavaScriptCore and ChakraCore. DIE took
full advantage of semantic information and structure features in
existing vulnerable samples and mined 48 bugs in the three en-
gines mentioned above. The latest fuzzer, Comfort, can fuzz nine
JS engines, including engines in mobile and embedded devices,
and identified 158 separate bugs. Notably, JSfunfuzz and LangFuzz
have respectively uncovered 2800+ and 2300+ vulnerabilities in
SpiderMonkey since inception, vastly enhancing the security of
JavaScript engines. Table 1 sums up the 16 JavaScript Engine Fuzzers
mentioned all above in timeline, comparing and presenting them
in six specific ways.

The core and challenge of JavaScript Engine Fuzzing is to build
and run high quality test cases efficiently. The mainstream is to
carry out corresponding mutation/generation operations at AST
level according to predefined models and strategies. In practice,
the main constraint on the vulnerability detection efficiency is
the complexity of the JavaScript engine, which has two aspects.
On the one hand, JavaScript Engine Fuzzing requires more test
cases that can trigger deep-rooted bugs. JS engine vulnerabilities
have been gradually extended from simple parsing and memory
corruption bugs to deep logic optimization bugs, which demand
complex conditions to trigger potential weak points, thus placing
high requests on the test case validity and execution path depth.
On the other hand, the increasing of JS engine code size leads to
the outsize of fuzzing search space. Therefore, more test inputs are
needed to cover the main execution path of JS engines effectively,
which puts higher demands on the fuzzers’ operating mechanism
and hardware device overhead.

Ye Tian et al.

Table 1: Comparison of JavaScript Engine Fuzzers

Fuzzer Year T M IC GA SA OS
jsfunfuzz 2007 G () v v
LangFuzz 2012 M/G @ + v

AFL 203 M © v
GramFuzz 2013 M/G @ vV v

IFuzzer 2016 M/G @ + v v v
TreeFuzz 2016 G o v

Skyfire 2017 G o v v

Fuzzilli 208 M © v v

CodeAlchemist 2019 G e v v v
Superion 2019 M o v v
Deity 200 M © v v
Nautilus 2019 M/G © v v
Montage 2020 G e v v v
SaFuzzer 2020 M o v v
DIE 2020 MG © v v v W
Comfort 2021 G o v v v

T: Type(G: generation, M: mutation), G.A: grammar-aware,
M: Model(@®: black-box, ©: grey-box), S.A: semantic-aware,

LC: input-corpus, O.S: open-source

Currently, generation-based fuzzing applying Deep Learning
and feedback-driven composite fuzzing are the two most effectual
means of detecting bugs in JavaScript engines. With continuous
maturity of artificial intelligence, using neural network models
to construct test cases has become a new trend in the JavaScript
Engine Fuzzing. NEUZZ [55] interacted the DL training process and
fuzzing execution process through a socket API, and guided test case
generation with edge coverage rate. This idea can be transferred to
detect bugs in JavaScript engines. Foreseeably, the integration of
feedback-driven gray-box models and DL will become a worthwhile
direction for JavaScript Engine Fuzzing. In addition, as the potential
vulnerability locus in JS engines gradually transition from parser
and interpreter to the deeper JIT compiler, it is also an ideal solution
to fuzz JIT compiler directly, and a preliminary attempt has been
made by JITFuzz [56]. The shift from testing breadth to testing depth
will also be a future trend. In the long run, with the development
of parallel and distributed computing, it is valuable to explore how
to expand the hardware execution capability of JavaScript Engine
Fuzzing by deploying high-performance computing.

6 CONCLUSION

The security of JavaScript engines is one of the vulnerable elements
threatening the whole web ecosystem. Fuzzing, as an efficient and
convenient scenario, is currently the most effective approach to
detect vulnerabilities in JavaScript engines. In this paper, we try
to provide a relatively comprehensive review of the development
and current state of JavaScript Engine Fuzzing. Combining specific
features of JavaScript engines, we analyzed the classification, tech-
nical principles, and challenges of previous research, and proposed
a general fuzzing framework. Then, we emphatically discussed the

Research on Fuzzing Technology for JavaScript Engines

cruxes affecting effectiveness and efficiency. At last, we summa-
rized the achievements of typical JavaScript Engine Fuzzers, and the
potential research direction of future JavaScript Engine Fuzzing.

ACKNOWLEDGMENTS

Thanks for the favorable research environment provided by State
Key Laboratory of Mathematical Engineering and Advanced Com-
puting. This work is supported by the National Science and Tech-
nology Major Projects of HEGAOJI (2018ZX01028102).
Abbreviations
JS: JavaScript; DL: Deep Learning; PoC: Proof of Concept

REFERENCES

(1]

[16]

[17

[18]

[19]

[20

[21]

[22

[23
[24]
[25]

[26]

[27]

W3Techs. Usage Statistics of Javascript for Websites. https://w3techs.com
/technologies/details/cp-javascript.

Google. V8: Google’s Open Source High-Performance JavaScript and WebAssem-
bly Engine. https://v8.dev/.

Microsoft. ChakraCore: The Core Part of the Chakra JavaScript Engine that
Powers Microsoft Edge. https://github.com/microsoft/ChakraCore.

Apple. JavaScriptCore: The Built-In JavaScript Engine for WebKit. https://trac.
webkit.org/wiki/JavaScriptCore.

Mozilla. SpiderMonkey: The JavaScript Engine for Firefox. https://developer.
mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey.

Samsung. Jerryscript: JavaScript Engine for the Internet of Things. https://
github.com/jerryscript-project/jerryscript.

B.P. Miller, L. Fredriksen, B. So (1990). An Empirical Study of the Reliability of
UNIX Utilities. Communications of the ACM, 33(12), 32-44.
Ecma-International. ECMAScript®2021 Language Specification. https://www.
ecma-international.org/ecma-262/.

H. Lin, J. Peng, S. Zhao, et al. (2019). Survey On JavaScript Engine Vulnerability
Detection. Computer Engineering and Applications, 55(11), 16-24.

N. Nagappan, T. Ball (2005). Static Analysis Tools as Early Indicators of Pre-
Release Defect Density. Proc of the 27th International Conference on Software
Engineering, ICSE’05, 580-586.

Synopsys. Coverity Scan Static Analysis. https://scan.coverity.com.

CyberRes. Fortify Static Code Analyzer. https://www.microfocus.com/en-us
/cyberres/application-security/static-code-analyzer.

Perforce. Klocwork: Best Static Code Analyzer for Developer Productivity, SAST,
and DevOps/DevSecOps. https://www.perforce.com/products/klocwork.

D.E. Denning (1976). A Lattice Model of Secure Information Flow. Communica-
tions of the ACM, 19(5), 236-243.

S. Gan, C. Zhang, P. Chen, et al. (2020). GREYONE: Data Flow Sensitive Fuzzing.
Proc of the 29th USENIX Security Symposium, USENIX Security’20, 2577-2594.
J.C. King (1976). Symbolic Execution and Program Testing. Communications of
the ACM, 19(7), 385-394.

R. Baldoni, E. Coppa, D.C. D’Elia, et al. (2018). A Survey of Symbolic Execution
Techniques. ACM Computing Surveys, 51(3), 50.

C. Omar, J. Aldrich (2016). Programmable Semantic Fragments: The Design and
Implementation of Typy. Proc of the ACM SIGPLAN Conference on Generative
Programming: Concepts and Experiences, GPCE’16, 81-92.

F. Brown, S. Narayan, R.S. Wahby, et al. (2017). Finding and Preventing Bugs
in JavaScript Bindings. Proc of the IEEE Symposium on Security and Privacy
(S&P’17), 559-578.

G. Maisuradze, M. Backes, C. Rossow (2017). Dachshund: Digging for and Securing
(Non-)Blinded Constants in JIT Code. Proc of the 24th Annual Network and
Distributed System Security Symposium, NDSS’2017.

P. Oehlert (2005). Violating Assumptions with Fuzzing. IEEE Secur. Priv., 3(2),
58-62.

P. Godefroid, M.Y. Levin, D.A. Molnar (2012). SAGE: Whitebox Fuzzing for Secu-
rity Testing. Communications of the ACM, 55(3), 40-44.

R. Swiecki, F. Grébert. Honggfuzz. https://github.com/google/honggfuzz.

M. Zalewski. American Fuzzy Lop. https://lcamtuf.coredump.cx/afl/.

K. Serebryany (2016). Continuous Fuzzing with libFuzzer and AddressSanitizer.
Proc of the IEEE Cybersecurity Development, SecDev’16, 157.

M. Eddington. Peach Fuzzing Platform. http://community.peachfuzzer.com
/WhatIsPeach.html.

M. Sutton. Filefuzz. http://osdir.com/ml/security.securiteam/2005-09/msg0007.

(28]
[29]
[30]

(31]

(32]

(33]

(34]

(35]

[36]

(37]

(38]

(39]

[40

[41]

[42]

[43

[44]

[45

[46]

[47]

(48]

[49]

[50

a
=

CSAE 2021, October 19-21, 2021, Sanya, China

V.J.M. Manes, H. Han, C. Han, et al. (2019). The Art, Science, and Engineering of
Fuzzing: A Survey. IEEE Transactions on Software Engineering, 1.
MozillaSecurity. JSfunfuzz. https://github.com/MozillaSecurity/funfuzz.

J. Patra, M. Pradel (2016). Learning to Fuzz: Application-Independent Fuzz Testing
with Probabilistic, Generative Models of Input Data. Proc of the Tech. Rep. TUD-
CS-2016-14664.

J. Wang, B. Chen, L. Wei, Y. Liu (2017). Skyfire: Data-Driven Seed Generation for
Fuzzing. Proc of the IEEE Symposium on Security and Privacy, S&P’17, 579-5%4.
H. Han, D. Oh, S.K. Cha (2019). CodeAlchemist: Semantics-Aware Code Gen-
eration to Find Vulnerabilities in JavaScript Engines. Proc of the 26th Annual
Network and Distributed System Security Symposium, NDSS’19.

S. Lee, H. Han, SK. Cha, et al. (2020). Montage: A Neural Network Language
Model-Guided JavaScript Engine Fuzzer. Proc of the 29th USENIX Security Sym-
posium, USENIX Security’20, 2613-2630.

Ecma-TechnicalCommittee. Test262: ECMAScript Test Suite. https://github.
com/tc39/test262.

G. Ye, Z. Tang, S.H. Tan, et al. (2021). Automated Conformance Testing for
JavaScript Engines Via Deep Compiler Fuzzing. Proc of the 42th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI'21.
M. Béhme, V. Pham, A. Roychoudhury (2016). Coverage-Based Greybox Fuzzing
as Markov Chain. Proc of the ACM SIGSAC Conference on Computer and Com-
munications Security, CCS’16, 1032-1043.

M. Béhme, V. Pham, M. Nguyen, A. Roychoudhury (2017). Directed Greybox
Fuzzing. Proc of the ACM SIGSAC Conference on Computer and Communications
Security, CCS’17, 2329-2344.

S. Gan, C. Zhang, X. Qin, et al. (2018). CollAFL: Path Sensitive Fuzzing. Proc of
the IEEE Symposium on Security and Privacy, S&P’18, 679-696.

J. Wang, B. Chen, L. Wei, Y. Liu (2019). Superion: Grammar-Aware Greybox
Fuzzing. Proc of the 41st International Conference on Software Engineering,
ICSE’19, 724-735.

T.J. Parr, RW. Quong (1995). ANTLR: A Predicated-LL(k) Parser Generator. Softw.
Pract. Exp., 25(7), 789-810.

H. Lin, J. Zhu, J. Peng, D. Zhu (2019). Deity: Finding Deep Rooted Bugs in
JavaScript Engines. Proc of the 19th IEEE International Conference on Com-
munication Technology, ICCT 19, 1585-1594.

Y. Wang, Q. Wang, W. Ding (2020). Research on Semantic-Aware Fuzzing for
JavaScript Engine. Journal of Information Engineering University, 21(03), 316-324.
S. Grof3(2018). Fuzzil: Coverage Guided Fuzzing for Javascript Engines, Depart-
ment of Informatics, Karlsruhe Institute of Technology.

C. Holler, K. Herzig, A. Zeller (2012). Fuzzing with Code Fragments. Proc of the
21th USENIX Security Symposium, USENIX Security’12, 445-458.

T. Guo, P. Zhang, An, et al. (2013). GramFuzz: Fuzzing Testing of Web Browsers
Based On Grammar Analysis and Structural Mutation. Proc of the International
Conference on Informatics & Applications, ICIA’13, 212-215.

S. Veggalam, S. Rawat, I. Haller, H. Bos (2016). IFuzzer: An Evolutionary Inter-
preter Fuzzer Using Genetic Programming. Proc of the 21st European Symposium
on Research in Computer Security, ESORICS’16, 581-601.

C. Aschermann, T. Frassetto, T. Holz, et al. (2019). NAUTILUS: Fishing for Deep
Bugs with Grammars. Proc of the 26th Annual Network and Distributed System
Security Symposium, NDSS’19.

S. Park, W. Xu, I. Yun, et al. (2020). Fuzzing JavaScript Engines with Aspect-
Preserving Mutation. Proc of the IEEE Symposium on Security and Privacy,
S&P’20, 1629-1642.

J. Park, S. An, D. Youn, et al. (2021). JEST: N+1 -Version Differential Testing of Both
JavaScript Engines and Specification. Proc of the 43rd International Conference
on Software Engineering, ICSE’21, 13-24.

Google. ClusterFuzz: Scalable Fuzzing Infrastructure. https://google.git
hub.io/clusterfuzz/.

Google. OSS-Fuzz: Continuous Fuzzing for Open Source Software. https://
google.github.io/oss-fuzz/.

O. Levi. Pin - a Binary Instrumentation Tool. https://software.intel.com/en-us
/articles/pin-a-dynamic-binary-instrumentation-tool.

DynamoRIO. Dynamic Instrumentation Tool Platform. https://dynamorio.org/.
S. Schumilo, C. Aschermann, R. Gawlik, et al. (2017). KAFL: Hardware-Assisted
Feedback Fuzzing for OS Kernels. Proc of the 26th USENIX Security Symposium,
USENIX Security’17, 167-182.

D. She, K. Pei, D. Epstein, et al. (2019). NEUZZ: Efficient Fuzzing with Neural
Program Smoothing. Proc of the IEEE Symposium on Security and Privacy,
S&P’19, 803-817.

Y. Wang, L. Sun, Y. Wang, Z. Xue (2021). A Fuzzing Method for JIT Complier of
JavaScript Engine. Communications Technology, 54(01), 175-180.

https://w3techs.com
https://v8.dev/
https://github.com/microsoft/ChakraCore
https://trac
https://developer
https://
https://www
https://scan.coverity.com
https://www.microfocus.com/en-us
https://www.perforce.com/products/klocwork
https://github.com/google/honggfuzz
https://lcamtuf.coredump.cx/afl/
http://community.peachfuzzer.com
http://osdir.com/ml/security.securiteam/2005-09/msg0007
https://github.com/MozillaSecurity/funfuzz
https://github
https://google.git
https://
https://software.intel.com/en-us
https://dynamorio.org/

	Abstract
	1 INTRODUCTION
	2 OVERVIEW
	2.1 JS Engine Operating Mechanism
	2.2 JS Engine Vulnerability Detection Methods
	2.3 Fuzzing Technique Outline
	2.4 Challenges

	3 CLASSIFICATION
	3.1 Generation-Based JS-Engine Fuzzing
	3.2 Mutation-Based JS-Engine Fuzzing
	3.3 Composite JS-Engine Fuzzing

	4 FUZZING FRAMEWORK
	4.1 Initial Corpus Construction
	4.2 Effectiveness & Efficiency Balance
	4.3 Runtime Feedback Techniques

	5 SUMMARY & OUTLOOK
	6 CONCLUSION
	Acknowledgments
	References

